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ABSTRACT

Graph networks have recently attracted considerable interest, and in particular in the
context of semi-supervised learning. These methods typically work by generating node
representations that are propagated throughout a given weighted graph.
Here we argue that for semi-supervised learning, it is more natural to consider propagating
labels in the graph instead. Towards this end, we propose a differentiable neural version of
the classic Label Propagation (LP) algorithm. This formulation can be used for learning
edge weights, unlike other methods where weights are set heuristically. Starting from
a layer implementing a single iteration of LP, we proceed by adding several important
non-linear steps that significantly enhance the label-propagating mechanism.
Experiments in two distinct settings demonstrate the utility of our approach.

1 INTRODUCTION

We study the problem of graph-based semi-supervised learning (SSL), where the goal is to correctly label all
nodes of a graph, of which only a few are labeled. Methods for this problem are often based on assumptions
regarding the relation between the graph and the predicted labels. One such assumption is smoothness, which
states that adjacent nodes are likely to have similar labels. Smoothness can be encouraged by optimizing an
objective where a loss term L over the labeled nodes is augmented with a quadratic penalty over edges:

min
f
L(yS, fS) + λ

∑
(i,j)∈E

wij‖fi − fj‖22 (1)

Here, y are the true labels, f are “soft” label predictions, S is the set of labeled nodes, and w are non-negative
edge weights. The quadratic term in Eq. (1) is often referred to as Laplacian Regularization since (for directed
graphs) it can equivalently be expressed using the graph Laplacian (Belkin et al., 2006).

Many early methods for SSL have adopted the general form of Eq. (1) (Zhu et al., 2003; Zhou et al., 2004;
Belkin et al., 2004; Bengio et al., 2006; Baluja et al., 2008; Talukdar & Crammer, 2009; Weston et al., 2012).
Algorithms such as the seminal Label Propagation (Zhu et al., 2003) are simple, efficient, and theoretically
grounded but are limited in two important ways. First, predictions are parameterized either naïvely or not at
all. Second, edge weights are assumed to be given as input, and in practice are often set heuristically.

Recent deep learning methods address the first point by offering intricate predictive models that are trained
discriminatively (Weston et al., 2012; Perozzi et al., 2014; Yang et al., 2016; Kipf & Welling, 2016; Grover &
Leskovec, 2016; Hamilton et al., 2017; Monti et al., 2017). Nonetheless, they still require w as input, which
may be surprising given the large body of work highlighting the importance of good weights (Zhu et al., 2003;
Kapoor et al., 2006; Wang & Zhang, 2008; Belkin et al., 2004; Karasuyama & Mamitsuka, 2013). Other
works address the second point by proposing disciplined ways for learning w. However, these either assume
specific simple parameterizations (Zhang & Lee, 2007; Karasuyama & Mamitsuka, 2013), or altogether
consider weights disjointly from predictions (Wang & Zhang, 2008; Liu et al., 2010).
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Our goal in this paper is to simultaneously addresses both issues. We propose a framework that, given a graph,
jointly learns both a parametric predictive model and the edge weights. To do this, we begin by revisiting
the Label Propagation (LP), and casting it as a differentiable neural network. Each layer in the network
corresponds to a single iterative update, making a forward pass equivalent to a full run of the algorithm. Since
the network is differentiable, we can then optimize the weights of the LP solution using gradient descent. As
we show, this can be done efficiently with a suitable loss function.

The key modeling point in our work is that labeled information is used as input to both the loss and the
network. In contrast to most current methods, our network’s hidden layers directly propagate labeling
information, rather than node or feature representations. Each layer is therefore a self-map over the probability
simplex; special care is therefore needed when introducing non-linearities. To this end, we introduce
two novel architectural components that are explicitly designed to operate on distributions. The first is
an information-gated attention mechanism, where attention is directed based on the informativeness and
similarity of neighboring nodes’ states. The second is a novel “bifurcation” operator that dynamically controls
label convergence, and acts as a balancing factor to the model’s depth.

Our main guideline in designing our model was to tailor it to the semi-supervised setting. The result is a
slim model having relatively few parameters and only one model-specific hyper-parameter (depth), making
it suitable for tasks where only few labeled nodes are available. The final network provides a powerful
generalization of the original propagation algorithm that can be trained efficiently. Experiments on benchmark
datasets in two distinct learning settings show that our model compares favorably against state-of-the-art
baselines.

1.1 RELATED WORK

Many SSL methods are based on Eq. (1) or on similar quadratic forms. These differ in their assumed input,
the optimization objective, and the parametric form of predictions.

Classic methods such as LP (Zhu et al., 2003) assume no parametric form for predictions, and require edge
weights as inputs. When node features are available, weights are often set heuristically based on some
similarity measure (e.g., wij = exp

(
‖xi − xj‖22/σ2

)
). LP constrains predictions on S to agree with their

true labels. Other propagation methods relax this assumption (Belkin et al., 2004; Bengio et al., 2006), add
regularization terms (Baluja et al., 2008), or use other Laplacian forms (Zhou et al., 2004).

Some methods aim to learn edge weights, but do not directly optimize for accuracy. Instead, they either model
the relations between the graph and features (Wang & Zhang, 2008; Liu et al., 2010) or simply require f as
input (Daitch et al., 2009; Kalofolias, 2016; Dong et al., 2016). Methods that focus on accuracy are often
constrained to specific parameterizations or assumptions (Karasuyama & Mamitsuka, 2013). Zhang & Lee
(2007) optimize the leave-one-out loss (as we do), but require a series of costly matrix inversions.

Several recent works in deep learning have been focused on graph inputs in general (Battaglia et al., 2018),
and several works have been proposed for SSL. These use a weighted graph to create meaningful vector
representations of nodes, which are then fed into a classifier. Methods fall into one of two distinct approaches,
each suited to a different setting. When the input includes only a graph (and no features), node representations
are generated using embedding techniques (Perozzi et al., 2014; Tang et al., 2015; Grover & Leskovec, 2016;
Hamilton et al., 2017). When the data includes node features (and possibly a graph), representations are
created either by convolving features over graph edges (Yang et al., 2016; Kipf & Welling, 2016; Monti et al.,
2017) or using attention (Velickovic et al., 2017). Our approach differs in three important ways. First, it
propagates labels, not feature or node representations. Second, it applies to both settings, and can operate on
a graph, on features, or on both. Third, and perhaps most importantly, it learns edge weights, rather than
assume they are given as input or heuristically set.
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1.2 PRELIMINARIES

We begin by describing the learning setup and introducing notation. The input includes a (possibly directed)
graph G = (V,E), for which a subset of nodes S ⊂ V are labeled by yS = {yi}i∈S with yi ∈ {1, . . . , C}.
We refer to S as the “seed” set, and denote the unlabeled nodes by U = V \ S, and the set of i’s (incoming)
neighbors by Ni = {j : (j, i) ∈ E}. We use n = |V |,m = |E|, ` = |S|, and u = |U | so that n = `+ u. In
a typical task, we expect ` to be much smaller than n.

We focus on the transductive setting where the goal is to predict the labels of all i ∈ U . Most methods (as well
as ours) output “soft” labels fi ∈ ∆C , where ∆C is the C-dimensional probability simplex. For convenience
we treat “hard” labels yi as one-hot vectors in ∆C . All predictions are encoded as a matrix f with entries
fic = P[yi = c]. For any matrix M , we will use MA to denote the sub-matrix with rows corresponding to A.
Under this notation, given G, S, yS, and possibly x, our goal is to predict soft labels fU that match yU.

In some cases, the input may also include features for all nodes x = {xi}i∈V . Importantly, however, we do
not assume the input includes edge weights w = {we}e∈E , nor do we construct these from x. We denote by
W the weighted adjacency matrix of w, and use W̃ and w̃ for the respective (row)-normalized weights.

2 UNROLLING LABEL PROPAGATION

Many semi-supervised methods are based on the notion that predictions should be smooth across edges. A
popular way to encourage such smoothness is to optimize a (weighted) quadratic objective. Intuitively, the
objective encourages the predictions of all adjacent nodes to be similar. There are many variations on this
idea; here we adopt the formulation of (Zhu et al., 2003) where predictions are set to minimize a quadratic
term subject to an agreement constraint on the labeled nodes:

f∗(w;S) = argmin
f :fS=yS

∑
(i,j)∈E

wij‖fi − fj‖22 (2)

In typical applications, w is assumed to be given as input. In contrast, our goal here is to learn them in a
discriminative manner. A naïve approach would be to directly minimize the empirical loss. For a loss function
L, regularization term R, and regularization constant λ, the objective would be:

min
w

1

`

∑
i∈S

L (yi, f
∗
i (w;S)) + λR(w) (3)

While appealing, this approach introduces two main difficulties. First, f∗ is in itself the solution to an
optimization problem (Eq. (2)), and so optimizing Eq. (3) is not straightforward. Second, the constraints in
Eq. (2) ensure that f∗i = yi for every i ∈ S, making the loss term in Eq. (3) redundant. While some methods
solve this by replacing these with weak constraints, a third issue is that it is still not clear why optimizing
edge weights for yS should generalize well to the unlabeled nodes.

In what follows, we describe how to overcome these issues. We begin by showing that a simple algorithm for
approximating f∗ can be cast as a deep neural network. Under this view, the weights (as well as the algorithm
itself) can be parametrized and optimized using gradient descent. We then propose a loss function suited to
SSL, and show how the above network can be trained efficiently with it.

2.1 LABEL PROPAGATION

Recall that we would like to learn f∗(w;S). When w is symmetric, the objective in Eq. (2) is convex and has
a closed form solution. This solution, however, requires the inversion of a large matrix, which can be costly,
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does not preserve sparsity, and is non-trivial to optimize. The LP algorithm (Zhu et al., 2003) circumvents
this issue by approximating f∗ using simple iterative averaging updates. Let f (t) be the set of soft labels at
iteration t and w̃ij =

∑
j wij , then for the following recursive relation:

f
(t+1)
i =

∑
j∈Ni

w̃ijf
(t)
j ∀i ∈ U (4)

it holds that limt→∞ f (t) = f∗ for any initial f (0) (Zhu et al., 2003). In practice, the iterative algorithm is
run up to some iteration T , and predictions are given using f (T ). This dynamic process can be thought of as
labels propagating over the graph from labeled to unlabeled nodes over time.

Motivated by the above, the idea behind our method is to directly learn weights for f (T ), rather than for
f∗. In other words, instead of optimizing the quadratic solution, our goal is to learn weights under which
LP preforms well. This is achieved by first designing a neural architecture whose layers correspond to an
“unrolling” of the iterative updates in Eq. (4), which we describe next.

2.2 ARCHITECTURE

The main building block of our model is the basic label-propagation layer, which takes in two main inputs:
a set of (predicted) soft labels h = {hi}ni=1 for all nodes, and the set of true labels yA for some A ⊆ S.
For clarity we use A = S throughout this section. As output, the layer produces a new set of soft labels
h′ = {h′i}ni=1 for all nodes. Note that both hi and h′i are in ∆C . The layer’s functional form borrows from the
LP update rule in Eq. (4) where unlabeled nodes are assigned the weighted-average values of their neighbors,
and labeled nodes are fixed to their true labels. For a given w, the output is:

h′U = W̃Uh, h′S = yS (5)

where W̃ is the row-normalized matrix of w. A basic network is obtained by composing T identical layers:
H(w;S) = h(T ) ◦ h(T−1) ◦ · · · ◦ h(0) (6)

where the model’s parameters w are shared across layers, and the depth T is the model’s only hyper-parameter.
The input layer h(0) is initialized to yi for each i ∈ S and to some prior ρi (e.g., uniform) for each i ∈ U .
Since each layer h(t) acts as a single iterative update, a forward pass unrolls the full algorithm, and hence H
can be thought of as a parametrized and differentiable form of the LP algorithm.

In practice, it is useful to further parametrize w. For edge features φij ∈ Rd, we assign weights by:

sij = 〈θφ, φij〉, wij = exp(sij), W̃ij =
wij∑

k∈Ni wkj
= softmaxi(sij) (7)

where θφ ∈ Rd are the learned parameters. We construct edge features using three different sources of
information: the graph, the labeled set, and, when available, the “raw” features x. See Appendix B for details.

3 GENERALIZING LABEL PROPAGATION

The label propagation layers in H pass distributions rather than node feature representations. It is important
to take this into account when adding non-linearities. We therefore introduce two novel components that are
explicitly designed to handle distributions, and can be used to generalize the basic layer in Eq. (5) The general
layer (illustrated in Figure 1) replaces weights and inputs with functions of the previous layer’s output:

h(t+1) = Ã(h(t); θα)µ(h(t), t; θτ ) (8)

where Ã(·) is a normalized weight matrix (replacing W̃ ), µ(·) is a soft-label matrix (replacing h(t)). The
edge-weight function Ã offers an information-gated attention mechanism that dynamically allocates weights
according to the “states” of a node and its neighbors. The labeling function µ is a time-dependent bifurcation
mechanism which controls the rate of label convergence. We next describe our choice of Ã and µ in detail.
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Figure 1: The label-propagation layer with attention (Sec. 3.1) and bifurcation (Sec. 3.2)

3.1 INFORMATION-GATED ATTENTION

The LP update (Eq. (4)) uses fixed weights w. The importance of a neighbor j is hence predetermined, and is
the same regardless of, for instance, whether hj is close to some y, or close to uniform. Here we propose to
relax this constraint and allow weights to change over time. Thinking of h(t)

i as the state of i at time t, we
replace wij with dynamic weights a(t)

ij that depend on the states of i and j through an attention mechanism α:

a
(t+1)
ij ∝ αij(h(t)

i , h
(t)
j ; θα) (9)

where θα are the attention parameters. Ã in Eq. (8) is the corresponding row-normalized weight matrix.

When designing α, one should take into account the nature of its inputs. Since both hi and hj are label
distributions, we have found it useful to let α depend on information theoretic measures and relations. We use
negative entropy e to quantify the certainty of a label, and negative KL-divergence d to measure cross-label
similarity. Both are parameterized by respective class-dependent weights θec and θdc :

αij(hj , hi; θ
α) = exp

(
e(hi; θ

e) + d(hi, hj ; θ
d)
)
, θα = [θe, θd] (10)

where:
e(p; θe) = −

∑C

c=1
θecpc log(1/pc), d(p, q; θd) = −

∑C

c=1
θdcpc log(pc/qc) (11)

In a typical setting, unlabeled nodes start out with uniform labels, making the overall entropy high. As
distributions pass through the layers, labeled information propagates, and both entropy and divergence change.
The attention of node i is then directed according to the informativeness (entropy) and similarity (divergence)
of the states of its neighbors. As we show in the experiments (Sec. 5), this is especially useful when the data
does not include node features (from which weights are typically derived). Figure 2 (left) exemplifies this.

3.2 BIFURCATION FOR CONTROLLING LABEL CONVERGENCE

Although the updates in Eq. (4) converge for any w, this can be slow. Even with many updates, predictions
are often close to uniform and thus sensitive to noise (Rosenfeld & Globerson, 2018). One effective solution
is to dynamically bootstrap confident predictions as hard labels (Kveton et al., 2010; Eliav & Cohen, 2018).
This process speeds up the rate of convergence by decreasing the entropy of low-entropy labels.

Here we generalize this idea, and propose a flexible bifurcation mechanism. This mechanism allows for
dynamically increasing or decreasing the entropy of labels. For node i and some τ ∈ R, hic is replaced with:

bifc(hi; τ) ,
(hic)

τ∑C
c′=1(hic′)τ

= µc(hi; τ) (12)
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Figure 2: (Left) A real example of an information-gated attention update. Green bars depict soft labels h
(C = 4), stars mark true labels. Red and blue bars (right) show values of θ. Arrow width indicates attentive
weight. determined by e and d (boxed bars), which are computed using h(t) and θ. Here θ directs attention at
the informative and similar neighbor (thick arrow), and the update amplifies the value of the correct label.
(Right) The bifurcation mechanism for C = 3 and various τ . Arrows map each h ∈ ∆C to bif(h) ∈ ∆C .

Note that since hi ∈ ∆C , this definition ensures that, for any τ , we have that µ(hi) ∈ ∆C as well.

When τ > 1 and as τ increases, entropy decreases, and confident labels are amplified. In contrast, when
0 < τ < 1 and as approaches 0, entropy decreases, and labels become uniform. For τ < 0 the effects are
reversed, and setting τ = 1 gives µ(hi) = hi, showing that Eq. (8) generalizes Eq. (5). Hence, τ acts as a
bifurcation parameter that changes the point of convergence when µ is repetitively applied. In practice, it is
useful to parameterize τ as a function of time. For θτ = [a, b], we use:

τ(t; θτ ) = a· t+ b+ 1 (13)
Thus, when θτ 6= 0, Eq. (13) allows for time-dependent variation in the bifurcation effects of Eq. (12). Figure
2 (right) illustrates how bif(·) operates on points in ∆ for different values of τ .

4 LEARNING

Recall that our goal is to learn the parameters θ of the network H(θ;S). Note that by Eq. (5), for all i ∈ S it
holds that Hi(θ;S) = yi. This deems the standard empirical loss ineffective, as it penalizes Hi(θ;S) only
according to yi. As an alternative, we propose an objective based on the leave-one-out loss:

Lloo(θ;S) =
1

`

∑
i∈S

L (yi, Hi(θ;S−i)) + λR(θ) (14)

where S−i = S \ {i}, L is a loss function, R is a regularization term, and λ is its coefficient. Here, each true
label yi is compared to the model’s prediction given all labeled points except i. Thus, the model is encouraged
to propagate the labels of all nodes but one in a way which is consistent with the held-out node. In practice
we have found it useful to weight examples in the loss by the inverse class ratio (estimated on S).

The leave-one-out loss is a well-studied un-biased estimator of the expected loss with strong generalization
guarantees (Kearns & Ron, 1999; Bousquet & Elisseeff, 2002; Kale et al., 2011). In general settings, training
the model on all ` sets {S−i}i∈S introduces a significant computational overhead. However, in SSL, when `
is sufficiently small, this becomes feasible (Zhang & Lee, 2007). For larger values of `, a possible solution is
to instead minimize the leave-k-out loss, using any number of sets with k randomly removed examples.

When λ is small, θ is unconstrained, and the model can easily overfit. Intuitively, this can happen when only a
small subset of edges is sufficient for correctly propagating labels within S. This should result in noisy labels
for all nodes in U . In the other extreme, when λ is large, w approaches 0, and by Eq. (15) w is uniform.

6



Under review as a conference paper at ICLR 2019

Table 1: Accuracy of different methods for the features setting (left) and no-features setting (right).

Method CiteSeer CoRA PubMed

LPNφ 56.2 66.6 75.0
LPU 50.0 43.4 65.2
LPRBF 50.0 41.3 65.4
ADSORP 51.1 58.8 70.5
ICA 46.4 46.1 37.8
GCN 52.0 61.3 41.9
NODE2VEC 46.4 53.1 74.4
RIDGEREG 23.7 26.9 39.5

Method CoRA DBLP Flickr IMDb Industry

LPNα 67.0 73.6 68.2 52.9 25.5
LPU 44.0 57.5 45.2 51.3 20.5
LEM 46.0 56.9 63.8 59.0 21.6
DEEPWALK 48.3 65.6 80.0 52.0 21.7
LINE 30.9 44.6 80.0 51.4 19.8
NODE2VEC 53.3 67.0 81.4 55.5 21.7

5 EXPERIMENTS

The current graph-SSL literature includes two distinct evaluation settings: one where the input includes a
graph and node features, and one where a graph is available but features are not. We evaluate our method
in both settings, which we refer to as the “features setting” and “no-features setting”, respectively. We use
benchmark datasets that include real networked data (citation networks, social networks, product networks,
etc.). Our evaluation scheme follows the standard SSL setup.1 First, we sample k labeled nodes uniformly at
random, and ensure at least one per class. Each method then uses the input (graph, labeled set, and features
when available) to generate soft labels for all remaining nodes. Hard labels are set using argmax. We repeat
this for 10 random splits using k = 1% labeled nodes. For further details please see Appendices A and C.

For each experimental setting we use different variants of our Label Propagation Network (LPN) that differ
in how edge weights are determined. Both variants use bifurcation with linear time-dependency (Sec. 3.2),
and include bi-directional edge weights. In all tasks, LPN was initialized with θ = 0, giving uniform weights.
We choose T ∈ {10, 20, . . . , 100} by running cross-validation on this untrained model. This process does
not require learning and so is extremely fast, and due to bifurcation, quite robust (see Figure 4). For training
we use a class-balanced cross-entropy loss with `2 regularization, and set λ by 5-fold cross-validation. We
optimize with Adam (Kingma & Ba, 2014) using a learning rate of 0.01.

Features setting: We use all relevant datasets from the LINQS collection (Sen et al., 2008). These include
three citation graphs, where nodes are papers, edges link citing papers, and features are bag-of-words. Since
labeled sets can be small, rather then a full parameterization, our model (DEEPLPφ) parameterizes w using a
small number (∼20) of informative features (φ) based on the raw features (e.g., dimensionality reduction), the
graph (e.g., edge betweenness), and the labeled set (e.g., distance from labeled nodes). See Appendix B for
details. Baselines include LP (Zhu et al., 2003) with uniform (LPU) and RBF (LPRBF) weights, the LP variant
ADSORPTION (Baluja et al., 2008), ICA (Lu & Getoor, 2003), and Graph Convolutional Networks2 (GCN,
Kipf & Welling (2016)). We also add features-only (RIDGEREG) and graph-only (NODE2VEC) baselines.

No-features setting: We use the FLIP collection (Saha et al., 2014), which includes several types of real
networks. As no features are available, for generating meaningful weights we equip our model (DEEPLPα)
with the attention mechanism (Sec. 3.1), letting weights vary according to node states. Baselines include LP
with uniform weights (LPU), the spectral embedding LEM (Belkin & Niyogi, 2003), and the deep embedding
DEEPWALK (Perozzi et al., 2014), LINE (Tang et al., 2015), and NODE2VEC (Grover & Leskovec, 2016).

Results: Table 3 includes accuracies for both features and no-features settings, each averaged over 10 random
splits. As can be seen, LPN outperforms other baselines on most datasetes, and consistently ranks high. Since
LPN generalizes LP, the comparison to LPU and LPRBF quantifies the gain achieved by learning weights (as

1 This differs from the setup in Yang et al. (2016), Kipf & Welling (2016), and others, and so results may also differ.
2 GCN requires a validation set for early stopping, for which we used an 80:20 split.
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opposed to setting them heuristically). When weights are parameterized using features, accuracy improves by
13.4% on average. When attention is used, accuracy improves by a similar 13.7%.

While some deep methods perform well on some datasets, they fail on others, and their overall performance
is volatile. This is true for both learning settings. A possible explanation is that, due to their large number
of parameters and hyper-parameters, they require more labeled data. Deep methods tend to perform well
when more labeled nodes are available, and when tuning is done on a large validation set, or even on an entire
dataset (see, e.g., Yang et al. (2016); Kipf & Welling (2016); Monti et al. (2017); Velickovic et al. (2017)). In
contrast, LPN requires relatively few parameters (θ) and only a singe model-specific hyper-parameter (T ).

Analysis: Figure 3 gives some insight as to why LPN learns good weights. It is well known that the Lapla-
cian’s eigenvalues (and specifically λ2, the second smallest one) play an important role in the generalization
of spectral methods (Belkin et al., 2004). The figure shows how λ2 and accuracy change over the training
process. As can be seen, learning leads to weights with increasing λ2, followed by an increase in accuracy.

Figure 4 demonstrates the effect of bifurcation for different depths T . As can be seen, a model with bifurcation
(LPNbif) clearly outperforms the same model without it (LPNnobif). While adding depth generally improves
LPNbif, it is quite robust across T . This is mediated by larger values of τ that increase label convergence rate
for smaller T . Interestingly, LPNnobif degrades with large T , and even τ slightly above 1 makes a difference.

6 CONCLUSIONS

In this work we presented a deep network for graph-based SSL. Our design process revolved around two
main ideas: that edge weights should be learned, and that labeled data should be propagated. We began by
revisiting the classic LP algorithm, whose simple structure allowed us to encode it as a differentiable neural
network. We then proposed two novel ad-hoc components: information-gated attention and bifurcation, and
kept our design slim and lightly parameterized. The resulting model is a powerful generalization of the
original algorithm, that can be trained efficiently using the leave-one-out loss using few labeled nodes.

We point out two avenues for future work. First, despite its non-linearities, the current network still employs
the same simple averaging updates that LP does. An interesting challenge is to design general parametric
update schemes, that can perhaps be learned. Second, since the Laplacian’s eigenvalues play an important
role in both theory and in practice, an interesting question is whether these can be used as the basis for an
explicit form of regularization. We leave this for future work.

8



Under review as a conference paper at ICLR 2019

REFERENCES

Shumeet Baluja, Rohan Seth, D Sivakumar, Yushi Jing, Jay Yagnik, Shankar Kumar, Deepak Ravichandran,
and Mohamed Aly. Video suggestion and discovery for youtube: taking random walks through the view
graph. In Proceedings of the 17th international conference on World Wide Web. ACM, 2008.

Vladimir Batagelj and Matjaz Zaversnik. An o (m) algorithm for cores decomposition of networks. arXiv
preprint cs/0310049, 2003.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representation.
Neural computation, 15(6), 2003.

Mikhail Belkin, Irina Matveeva, and Partha Niyogi. Regularization and semi-supervised learning on large
graphs. In International Conference on Computational Learning Theory. Springer, 2004.

Mikhail Belkin, Partha Niyogi, and Vikas Sindhwani. Manifold regularization: A geometric framework for
learning from labeled and unlabeled examples. Journal of machine learning research, 7(Nov), 2006.

Yoshua Bengio, Olivier Delalleau, and Nicolas Le Roux. Label propagation and quadratic criterion. In
B. Schölkopf O. Chapelle and A. Zien (eds.), Semi-Supervised Learning, chapter 11. MIT Press, 2006.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10), 2008.

Olivier Bousquet and André Elisseeff. Stability and generalization. Journal of machine learning research, 2
(Mar), 2002.

Ulrik Brandes. A faster algorithm for betweenness centrality. Journal of mathematical sociology, 25(2),
2001.

Justin Cheng, Lada Adamic, P Alex Dow, Jon Michael Kleinberg, and Jure Leskovec. Can cascades be
predicted? In Proceedings of the 23rd international conference on World wide web, pp. 925–936. ACM,
2014.

Samuel I Daitch, Jonathan A Kelner, and Daniel A Spielman. Fitting a graph to vector data. In Proceedings
of the 26th Annual International Conference on Machine Learning. ACM, 2009.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman. Indexing
by latent semantic analysis. Journal of the American society for information science, 41(6), 1990.

Xiaowen Dong, Dorina Thanou, Pascal Frossard, and Pierre Vandergheynst. Learning laplacian matrix in
smooth graph signal representations. IEEE Transactions on Signal Processing, 64(23), 2016.

Buchnik Eliav and Edith Cohen. Bootstrapped graph diffusions: Exposing the power of nonlinearity.
Proceedings of the ACM on Measurement and Analysis of Computing Systems, 2(1), 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings of the
22nd ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, 2017.

9



Under review as a conference paper at ICLR 2019

Satyen Kale, Ravi Kumar, and Sergei Vassilvitskii. Cross-validation and mean-square stability. In In
Proceedings of the Second Symposium on Innovations in Computer Science (ICS2011. Citeseer, 2011.

Vassilis Kalofolias. How to learn a graph from smooth signals. In Artificial Intelligence and Statistics, 2016.

Ashish Kapoor, Hyungil Ahn, Yuan Qi, and Rosalind W Picard. Hyperparameter and kernel learning for
graph based semi-supervised classification. In Advances in Neural Information Processing Systems, 2006.

Masayuki Karasuyama and Hiroshi Mamitsuka. Manifold-based similarity adaptation for label propagation.
In Advances in neural information processing systems, 2013.

Michael Kearns and Dana Ron. Algorithmic stability and sanity-check bounds for leave-one-out cross-
validation. Neural computation, 11(6), 1999.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR), 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Branislav Kveton, Michal Valko, Ali Rahimi, and Ling Huang. Semi-supervised learning with max-margin
graph cuts. In Proceedings of the Thirteenth International Conference on Artificial Intelligence and
Statistics, 2010.

David Liben-Nowell and Jon Kleinberg. The link-prediction problem for social networks. journal of the
Association for Information Science and Technology, 58(7), 2007.

Wei Liu and Shih-Fu Chang. Robust multi-class transductive learning with graphs. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on. IEEE, 2009.

Wei Liu, Junfeng He, and Shih-Fu Chang. Large graph construction for scalable semi-supervised learning. In
Proceedings of the 27th international conference on machine learning (ICML-10), 2010.

Qing Lu and Lise Getoor. Link-based classification. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), 2003.

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M Bronstein.
Geometric deep learning on graphs and manifolds using mixture model cnns. In Proc. CVPR, volume 1,
2017.

Mark EJ Newman. A measure of betweenness centrality based on random walks. Social networks, 27(1),
2005.

Ferran Parés, Dario Garcia-Gasulla, Armand Vilalta, Jonatan Moreno, Eduard Ayguadé, Jesus Labarta, Ulises
Cortés, and Toyotaro Suzumura. Fluid communities: A competitive and highly scalable community
detection algorithm.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social representations. In
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, 2014.

Nir Rosenfeld and Amir Globerson. Semi-supervised learning with competitive infection models. In AISTATS,
2018.

10



Under review as a conference paper at ICLR 2019

Tanwistha Saha, Huzefa Rangwala, and Carlotta Domeniconi. Flip: active learning for relational network
classification. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases.
Springer, 2014.

Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3), 2008.

Partha Pratim Talukdar and Koby Crammer. New regularized algorithms for transductive learning. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, 2009.

Jian Tang, Meng Qu, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei. Line: Large-scale information
network embedding. In Proceedings of the 24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2015.

Jorge Carlos Valverde-Rebaza and Alneu de Andrade Lopes. Link prediction in complex networks based on
cluster information. In Advances in Artificial Intelligence-SBIA 2012. Springer, 2012.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. stat, 1050, 2017.

Fei Wang and Changshui Zhang. Label propagation through linear neighborhoods. IEEE Transactions on
Knowledge and Data Engineering, 20(1), 2008.

Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep learning via semi-supervised
embedding. In Neural Networks: Tricks of the Trade. Springer, 2012.

Zhilin Yang, William W. Cohen, and Ruslan Salakhutdinov. Revisiting semi-supervised learning with graph
embeddings. In Proceedings of the 33rd International Conference on International Conference on Machine
Learning, ICML’16, 2016.

Xinhua Zhang and Wee S Lee. Hyperparameter learning for graph based semi-supervised learning algorithms.
In Advances in neural information processing systems, 2007.

Denny Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard Schölkopf. Learning with local
and global consistency. In Advances in neural information processing systems, 2004.

Xiaojin Zhu, Zoubin Ghahramani, John Lafferty, et al. Semi-supervised learning using gaussian fields and
harmonic functions. In ICML, volume 3, 2003.

11



Under review as a conference paper at ICLR 2019

Appendices
A DATASETS

Dataset statistics are summarized in Table 1. As described in Sec. 5, there are two collections of data, LINQS3

(Sen et al., 2008) and FLIP4 (Saha et al., 2014) for two distinct settings: semi-supervised learning with and
without features, respectively. For each dataset we use the largest connected component.

Collection Dataset Nodes Edges Classes Features

LINQS
Citeseer 2,708 5,278 7 1,433
CoRA 3,132 4,713 6 3,703

Pubmed 19,717 44,324 3 500

FLIP

CoRA 2,708 5,278 7 -
DBLP 5,329 21,880 6 -
Flickr 7,971 478,980 7 -
IMDb 2,411 12,255 22 -

Industry 2,189 11,666 12 -

Table 2: Details of datasets used in the experiment.

B EDGE FEATURES FOR PARAMETERIZING WEIGHTS

Although possible, parameterizing H directly by w will likely lead to overfitting. Instead, we set edge weights
to be a function of edge features φij ∈ Rd and parameters θφ ∈ Rd, and normalize using softmax over scores:

sij = 〈θφ, φij〉, wij = exp(sij), Ãij =
wij∑

k∈Ni wkj
= softmaxi(sij) (15)

Our main guideline in choosing features is to keep in line with the typical SSL settings where there are
only few labeled nodes. To this end, we use only a handful of features, thus keeping the number of model
parameters to a minimum.

We propose three types of features suited for different settings. Most works consider only “raw” node
features (e.g., bag-of-words for papers in a citation network). The model, however, requires edge features for
parameterizing edge weights. Edge features are therefore implicitly constructed from node features, typically
by considering node-pair similarities in features space. This has three limitations. First, node feature spaces
tend to be large and can thus lead to over-parameterization and eventually overfitting. Second, edge features
are inherently local, as they are based only on the features of corresponding nodes, and global graph-dependent
properties of edges are not taken into account. Third, parameterization is completely independent of the
labeled set, meaning that edges are treated similarly regardless of whether they are in an informative region of
the graph (e.g., close to labeled nodes) or not (e.g., far from any labeled node).

In accordance, we propose three types of features that overcome these issues by leveraging raw features, the
graph, and the labeled “seed” set.

3 http://linqs.umiacs.umd.edu/projects/projects/lbc/
4 http://cs.gmu.edu/~tsaha/Homepage/Projects.html
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Raw features (φx): When the data includes node features xi, a simple idea is to use a small set of uncorre-
lated (unparameterized) similarity measures. Examples include feature similarity measures such as cosine
(x>i xj/‖xi‖‖xj‖) or Gaussian (exp{−‖xi− xj‖22/σ2}) and the top components of dimensionality reduction
methods.

Graph features (φG): When the graph is real (e.g., a social network), local attributes and global roles
of nodes are likely to be informative features. These can include node attributes (e.g., degree), centrality
measures (e.g., edge betweenness), path-ensembles (e.g., Katz distance), and graph-partitions (e.g., k-cores).
These have been successfully used in other predictive tasks on networked data (e.g., Cheng et al. (2014)).

Seed features (φS): Since labels propagate over the graph, nodes that are close to the labeled set typically
have predictions that are both accurate and confident. One way of utilizing this is to associate an incoming
edge with the lengths of paths that originate in a labeled node and include it. This acts as a proxy for the
reliability of a neighbor as a source of label information.

In general, features should be used if they lead to good generalization; in our case, this depends on the
available data (such as node features), the type of graph (e.g., real network vs. k-NN graph), and by the layout
of the labeled set (e.g., randomly sampled vs. crawled). Table 3 provides a list of some useful features of
each of the above types. These were used in our experiments.

Table 3: Raw, graph and seed features used in our model with features.

Type Category Unit Feature name Definitions and notes

Raw Feature Similarity Node Cosine Distance x·y
‖x‖‖y‖

Raw Feature Similarity Node Euclidean Distance ‖x− y‖
Raw Feature Similarity Node RBF Kernel 5. exp

(
− ‖x−y‖2

2σ2

)
Raw Dim. Reduction Node LSI (Deerwester et al., 1990) 6 reduction for binary features
Graph Centrality Node Degree 7 in and out degrees
Graph Centrality Node Average Neighbor Degree
Graph Partitions Node Same Core Number (Batagelj & Zaversnik, 2003)
Graph Partitions Node Same Louvain Community (Blondel et al., 2008)

Graph Centrality Edge Edge Betweenness Centrality (Brandes, 2001) 8
∑
s,t∈V σ(s,t|e)

σ(s,t)

Graph Centrality Edge Edge Current Flow Betweenness (Newman, 2005) as above, with electric model
Graph Link Prediction Edge Jaccard Coefficient (Liben-Nowell & Kleinberg, 2007) |Γ(u)∩Γ(v)|

|Γ(u)∪Γ(v)|
Graph Link Prediction Edge Adamic Adar Index (Liben-Nowell & Kleinberg, 2007)

∑
w∈Γ(u)∩Γ(v)

1
log |Γ(w)|

Graph Link Prediction Edge Preferential Attachment (Liben-Nowell & Kleinberg, 2007) |Γ(u)||Γ(v)|
Graph Link Prediction Edge Within Inter Cluster (Valverde-Rebaza & de Andrade Lopes, 2012) # within

# inter cluster common neighbors
Graph Partitions Edge Same Fluid Community (Parés et al.) 9

Seed Path Length Edge Path Length to seed labeled nodes 10 length to seed in each/all classes

C EXPERIMENTAL EVALUATION DETAILS

C.1 PARAMETERS, HYPER-PARAMETERS, AND TUNING

Features: For the model with feature-based weights, we used features generated from nodes, edges and seed
nodes. A total of roughly 20 features were used, as summarized in Table 2. There, x,y denote feature vectors

5For σ, use the mean shortest pairwise distance as in Liu & Chang (2009).
6Use top 3 components.
7Use original directed edges.
8Use directed edges, reversed edges, and bi-directional edges.
9Use top 5 communities.

10Use both shortest and average lengths.
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of two different nodes. Γ(u) is the set of neighbors of u. σ(s, t) is the number of shortest paths from s to t
and σ(s, t|e) is those that pass through e.

Bifurcation: We use a linear-time parameterization of the bifurcation mechanism τ(t; θτ ) = a · t+ b+ 1. In
the implementation, a and b were scaled down via a′ = a/100, b′ = b/100 to moderate the learning rate.

Regularization: The regularization parameter λ was tuned using 5-fold cross validation. We used the range
λ ∈ {0, 2−18, 2−16, ..., 22, 24} and chose by highest average accuracy on held out sets.

Model depth: The model depth T (which we also think of the number of iterations or updates) were chosen
by running-5 fold cross validation on the untrained model, that is, with a fixed θ = 0. We used the range
T ∈ {10, 20, ..., 100} and chose by highest average accuracy. Chosen T for each dataset is, 90, 20, 20 for
Citeseer, CoRA, Pubmed in the LINQS collection and 10, 30, 10, 70, 40 for CoRA, DBLP, Flickr, IMDb,
Industry in the FLIP collection, respectively.

C.2 IMPLEMENTATION

Eqs. (5) and (8) are implemented in TensorFlow using sparse tensor operations. Layer composition (Eq. (6))
is implemented using control-flow while loops, which easily allows for efficiently training very deep networks.
Since all of the model’s components are differentiable, Eq. (14) can be optimized using gradient descent.
Note that θ is shared across all layers. As a result, for the basic model, w is also shared, and the overall
number of variables is O(m).

All experiments were run on machines with NVIDIA DGX-1 11.

For both settings, our runtime compares to other deep SSL methods. For each dataset, a single epoch takes on
average 0.15, 0.3, 0.4 seconds for Citeseer, CoRA, Pubmed in the LINQS collection and 3.5, 13.5, 11, 9, 1.5
for CoRA, DBLP, Flickr, IMDb, Industry in the FLIP collection, respectively.

C.3 BASELINES

All baselines were trained with the default parameters. For methods that require regularization an `2 penalty
was applied.

• LP: when possible, used closed-form solution, otherwise used sparse linear system solver. Weights
were initialized either as all ones or with a RBF kernel.
• ADSORPTION: implemented according to Algorithm 1 in (Talukdar & Crammer, 2009).
• ICA: used source code provided by the Kipf & Welling (2016).
• LEM: used source code provided by the authors.
• GCN: used source code provided by the authors. The original code is designed for running

experiments in a setting that differs from ours. We therefore made minor adjustments to accommodate
it to our setting: (1) we randomly sample 20% of the labeled nodes to be used as a validation set (the
original code uses a designated validation set), and (2) we train for a minimum of 100 epochs (the
original early stopping criteria lead to degenerate stopping).
• ADSORPTION: used implementation from scikit-learn.
• DEEPWALK: used source code provided by the authors.
• NODE2VEC: used source code provided by the authors.
• LINE: used source code provided by the authors.

11https://www.nvidia.com/en-us/data-center/dgx-1/
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